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This paper deals with the relationship of recent advances in opti-
mization theory, algorithms, and computation to problems of engineering
design. The use of point-based optimality criteria for sensitivity anal-
ysis is discussed using as an example the design of a cylindrical torsion
bar. The use of branch and bound methods for handling nonconvex program-
ming problems to get around the problem of multiple local solutions is
illustrated with a problem of reservoir design. An automatic procedure
based on a new language for describing mathematical functions is shown as
a way to interface between algebraic descriptions of design problems and
computer codes implementing more powerful algorithms. This is illustrated
by a problem in the design of a space launch vehicle. The capability of
converting any optimization problem to a separable problem--thus facil-
itating the computerized description of the problem--is illustrated by
aspects of the design of a vertical corrugated transverse bulkhead.
Finally, comments are made concerning the future relationship between
optimal engineering design problems and algorithms for solving them.
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1. Introduction

Since the second world war, spurred by the development and availabil-

ity of computers there has been an increased effort directed toward developing

methodology for solving optimization problems. Problems for solution have

originated from two groups. The first, composed of economists, operations

research analysts, management scientists, and planners has been concerned with

the problem of how best to allocate scarce resources. Since the functional

relationships in this area are not known, this group has, in the main, been

content to develop programming models having only linear relationships. The

success of computer codes implementing versions of the Simplex method for

solving linear programming problems has reinforced the basic orient.ation of

this group.

The second group, with a longer history, Is composed of physicists,

chemists, engineers, and other scientists. The problems of interest to this

group contain functional relationships which, because of physical laws, are

exact, and which contain nonlinear effects. Engineering optimization problems.

are usually ones of design. Although much thought and time has been put into

the geometric and algebraic descriptions of these problems, little has been

done in a systematic way to attack these problems using recent algorithmic

and computational advances in nonlinear programing.

It is the intent of this paper to show how this might be done.
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2. Sensitivity Analysis

Rarely is a person with a design modal interested in the solution to

one optimization problem. Of equal interest usually are changas in the op-

r timal design which obtain when various aspects of the model are altered.

One way to obtain this information is to solve many optimization p-. .'ns'

containing systematic variations of the input parameters of the model and

observe the changes in design.

Another way, based on receint developments in the theory characterizing

a solution to an optimization problem is to use information available at the

solution to a particular problem and generate a matrix which can be used

independently to assess all the design changes affected by small simultaneous

input parameter changes. The theory of this approach is contained in [3, Sec-

tion 2.4]. The practial use of this approach is demonstrated by the following

example taken from Pascual [7, p. 241, and Johnson [4, pp. 290-291].

Example 1 [Optimal Design of a Cylindrical Torsion Bar]

The problem is to fine the diameter (d) and the length (L) of a cylin-

drical torsion bar which will tranamit a virtually constant twisting torque

(T), hove a specified torsional rigidity (k), and for which the weight of the

bar will be minimal over all those having these properties.

The mathematical progra-ming problem is
minimize W - wnd L/4 (1)

F (d,L)

subject to the constraints

316T/lrd s S t/2N , (2)

4k ird G/32L (3)

-2-
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Here

W u weight of the torsion bar,

d a diameter of the torsion bar,

L - length of the torsion bar,

w - specific weight- of the torsion bar,

G - modulus of elasticity in shear (or modulus of rigidity),

St a published yield strength of the material,

N - given factor of safety based on the occurrence of yielding as the

failure phenomenon,

T - the torque, and

k - the prescribed torsional rigidity.

The expression for weight in (1) is simply the volume of the cylin-

drical torsion bar times the specific density. The expression on the left of

(2) gives the maximum stats of shear stress experienced by tbe bar for the

applied torque r . This occurs at the outer edge of the bar and is the same

along its length. This must not exceed the experimentally determined yield

point of the bar or permanent distortion will result. Equation (3) gives the

torsional rigidity which is a function of the diameter of the bar as well as

its modulus of rigidity. The higher the k valuc the less temporary defor-

mation is experienced by the baz when torque is applied to it.

For this model, values of the parameterw used were w - 490 lbs/ft3

G - 11.5 x 106 psi, Sr a 35,000 psi, N - 2, T - 1000 lb-inl, and k - 105 lb-in.

For purposes of convenience the problem is rewriLten

minimize wd 2L/4
(dL)

subject to wd3S - 32NT 0 * (4)

32Lk- rd4G -0 (5)

-3-
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The solution to this problem occurs at (d*.L*) * (.834937,5.486689,,

(both quantities in inches). The generalized Lagrange multiplier associated

with the inequality constraint is u - .186342 x 10 ", and the Lagrange

multiplier associated with the equality constraint has a value wI - .485175

x 10 -6. These are the values for which the gradient of the Lagrangian func-

tion a(d,L,u 1 ,W1) - wrd 2L/4 - u1 (Trd 3St-32NT) + wl(32Lk-lTd 4G)

vanishes, i.e., for which

[ WTIdL/2] [r3 d 2  +[~4Trd 3 G] r..o]0wi d4 2 A s0 32k J] [o
The interpretation of the Lagra-fe r•ltiplier is well-known. If the

right hana side of (4) is changed to 6 , then the solution to the perturbed

problem has an optimal objective function value which differs from that of

the problem just solved by approximately 6ul . What is not so well-known is

that information is available to answer the question of how the minimizing

point itself changes when general perturbations are placed on the above

problem.

To illustrate this without giving the general formulation which is

contained in (3, section 2.4], suppose the question was posed for the above

example how much: would the solution change if the torsional rigidity require-

ment (k) were changed from 100,000 lb-in to 102,000 lb-in and simultaneously

the torque (T) from 1000 lb-in to 1030.301 lb-in ?

From the general theory in [3) we obtain the result that the problem

resulting from the replacement in (4) of T by T + AT , and in (5) k by

k + Ak results in a new minimizing vector and associated Lagrange multipliers

which can be approximated from those of the original problem by the expression

-4--- 4 -
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d wrL/2-6wd S u1 -12(d ) Gw wird /2, -371 (d 2st) , -47T(d) 3C 0,0

u (d S) 0 0 0 0 64u1 , 0

*3
[ -4n(d)G ) 32k1 0 0 0 0, -32L

Using AT - 30.301, and Ak - 2,000, computation of the above quantities

yields the expected change in the optimal d and L as (.00843..11193)

- For comparison purposes, the perturbed problem has a solution which differs

from the original one by (.00834,.11083).. Thus the approximation agrees

with the exact change to about 3 significant figures.

In some problems it is not a priori obvious even the directiun of

change of the problem solution wben the values of many parameters are changed

simultaneously. The use of sensitivity information should have wide appli-

- cation in the area of engineerlng design.

-5-
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3. Obtaining Global as Opposed to Local Solutions by Use of Branch and

Bound Techniques

Most algorithms for solving nonlinear programming problems are only

guaranteed to find global (as opposed to local) solutions when the problem

functions describe a convex programming problem. Problems which can trap an

algorithm at a local solution often arise when the objective function (to be

minimized) is a total cost function with decreasing marginal costs. A simple

picture is contained in Figure 1. The curve shown in Figure 1 is concave

whereas if it were convex, its use in an optimization problem would cause no

difficulty. To illustrate the difficulties this can cause and also to illus-

trate the increasingly important branch and bound approach for solving these

problems we consider the following example. It is taken from the area of

water pollution control which is becoming a source of optimization problems

which involve both groups of people, the social and physical scientists men-

tioned in the introduction.

Example 2 [Optimal Reservoir Design]

The concentration of dIssolved oxygen in the water of a certain section

of a river is below the acceptable level due to pollution of the river. It

is desired to increase the level of dissolved oxygen to the acceptable level

by building reservoirs at one or more upstream points of the river so as to be

able to augment the river flow and dilute the wastes.

Although the original model contained many sites, for illustrative

pusposes we consider an idealized model with two sites. Let x be the flow

25augmentation at site J, j - 1,2, and ix5 be the cost to build a reservoir

25
at site 1 to augment the flow by amount xI and let 2xi2 be the cost to

-6-
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total cost to build
a reservoir which
augmenti flow by an
amount A

flow augmentation x

Figure 1. A Concave Function of One Variable

-7-
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build a reservoir at site 2 to augment the flow by amount x2  Assume that

the required augmentation is 3. Algebraically stated then the optimization

problem is to find xI and x2 which minimize the total cost

lx;5 + 2xj 2 5

aubject tý; the constraiixts

xl + X 1 3, x, • J, x2 t 0, x, 6, x2 • 5

1he region of feasible points along with two curves of constant costs are

plotted in Figure 2.

It is obvious that (0,3) and (3,0) are local solutions to the problem,

i.e., that in a region about either point all information indicates that that

point is a solution., Just about any algorithm which tries to solve this prob-

lem will go to either solution depending upon the initial starting point. A

•uarantee of the ability of an algorithm to obtain a global (as opposed to

local) solution is required.

Recently branch and bc,,nd methodology [1], [9] has been applied to

problems of the above form in order to guarantee convergence to a global solu-

tion. Rather than define what a branch and bound method is in general, the

problem just stated will be solved by such an algorithm.

The basic branch and bound approach for solving the nonconvex program-

ming problem is to solve a sequence of underestimating convex programming

problems which apply to subregions of the feasible region. A sequence of

underestimating values for the solution of the original problem is created

wbich approaches the optimal value from below. First a convex (in this case

linear) underestimate is generated of the objective function in the rectangle

0 < x1 • 6, 0 x 5 . Figures 3 and 4 Rhow that the linear function
-5

.408x 1  is a linear underestimate of the function x^ in the interval

-8-
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3

2~xl

0 3 6

Figure 3. Concave Function of x, with Underestimating
Convex Envelope

6

4

x.25

22

02

figure 4. Concave Function of x 2 with Underestimating
Convex Envelope

-10
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[0,6] , and that .598x 2  is a linear underestimate of 2x*2 5  in the interval

[0,5] . In fact these straight lines are the highest convex functions which

underestimate the original ones in those intervals.

The following programming problem is an underestimating convex (linear

in this case) programming problem for the original nonconvex one. Find

values of xI and x2 which

minimize .408x 1 + .598x 2

subject to the constraints

xI + x 2  3, 0 x 6,0 x 2  5

The solution to this problem is at x (3,0) , with an objective function

value (of the linear underestimating function) of 1.224. Thus we know that

the global minimizing value to the original problem is bounded below by 1.224.

The next step in the procedure is to divide the original rectangle into

two parts and solve an underestimating problem for each part which is 'Closer

to' the original problem than the first underestimating problem solved above.

The decision on how to divide is made by choosing that variable for which the

difference in function values between the underestimating function and the

origiral function is greatest. Using this criterion, the decision is made to

split the original rectangle into two parts on x, , yielding the new sets of

constraints 0 < xI. 03, x 5, and 3 < x, < 6, 0< x 5. Using the

same approach for generating convex underestimating envelopes the first new

programmitng problem to be solved is

minimize .577x 1 + .59gx 2

subject to 0 < x 1 3, 0 1 x2-ý 5, x1 + X2 3

which has a solution at (3,0) with solution value 1.732.

- 11 -
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The problem associated with the other rectangle is

minimize 1.015 + .239x 1 + .598x 2

subject to 3 x1 , 6, 0 x2  5, x + x2 3

which has a solution at (3,0) with solution value 1.732 also. Since both

values are lower bounds to the global optimum, and since (3)' + 2(0)25

1.732 , the global solution has been obtained.

Branch and bound techniques can also be used to handle problems which

are not well-behaved in that the functions lack the proper smoothness or

continuity properties. Also, these techniques to date are the most successful

approaches for solving combinatorial problems, e.g., problems where the diffi-

culty is in ascertaining the order in which activities are to be performed,

or whether or not to perform them rather than the optimal level of any activ-

ity.

12

I

Si -12-



T-263
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4. Computer Code-Optimization Model Interface

A major hurdle to the computer solutton of nonlinear optimization

problems in engineering design is the lack of an automated procedure for

giving codes all the inputs an algorithm needs to solve the problem. For

example, the branch and bound procedure applied to the problem in the previous

section is general enough to solve separable programming problems of the form
nI

minimize n f (x )

subject to E 1 n jj(xj) 0 O i -

A further requirement is that for any function, say f (xj) in any given

interval [LjIUj] , the user must supply a function d (x ) which is the

convex envelope of f J(x ) in the interval. That is, one must supply to the

computer code implementing the branch and bound method the highest convex

envelope which underestimates the function f (x j) in that interval.

For another example, the code implementing the sequential uuconstrained

minimization technique (SINT) [5], [3] requires the user to supply the first

derivatives of the problem functions. To be efficient, the code asks the user

to supply the second derivatives. A certain amount of this trouble can be

avoided by the use of difference approximations instead of the analytic forms,

but it is no wonder that engineers in the design area are more inclined to use

heuristically based algorithms such as the SIMPLEX SEARCH method [6] for

solving their optimization problems which require only function values.

One solution to this problem has been the development of a language [8]

and a computer program which automatically computes first and second deriva-

tives of an algebraic expression when the problem functions are written down

in the language by the user. In (6) is an expression giving the first stage

- 13 -
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velocity of a three stage space launch vehicle as a function of design vari-

ables written in this language. The FORTRAN-like expression is

X(14)*Tl*GBAR*L0G(l./X(13))/X(15) . (6)

where

X(14) - stage 1 total thrust in thousands of pounds.

Ti - stage 1 burn time in seconds,

X(13) - stage 1 mas3 fraction (dimensionless),

GEAR - gravity constant, and

LOG - natural logarithm function.

The first four quantities above are design variables of the optimization model

[1, Chapter 2], which was to produce a minimum cost design satisfying certain

performance characteristics. Its solution using SUMT required the supplying

of a computer program for the analytic derivatives of expressions like the

one in (6). This was an extremely time consuming and an error prone enter-

prise. Using the new language, such model implementation is much more feasible.

Another approach to this problem now under consideration is to first

convert the programming problem into a separable problem and devise a card

format for separable terms allowing for any conveivable functions of a single

variable. Computer routines could be coded and used to compute the deriva-

tives, first and second, and the convex envelopes of functions of a single

variable.

The general procedure for converting an optimization problem to a

separable problem is to add variables and increase the number of constraints.

As an example, consider the following which expresses the requirement that

the section modulus of a vertical transverse corrugated bulkhead satisfy

certain rules contained in Det Norskes Vertam. Tho inequality is [1, p. 56],

14
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1 kh 12  x + 2 x2 1/2 0
+2 'T 13X4 tt x1 +(x 2 -x3 ) ]30.

* iThis constraint can be 'separated' by the addition of three more ,ariables

* and three constraints. The resulting constraints are

lnx + nx 4 + x -n(kht I) -nx 4 > ,

1 ax
-x +- xe5 x

Sx + .1 x" 1 ea5

62 21

2 2 2
2 3 6

A computer code can probably be developed to take the functions written

in the language described in [8] and do the conversions required to separate

the problem.

-15-
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5. Conclusion

In this paper, a brief suary of some recent powerful theoretical

tools for sensitivity analysis in engineering design, and recent globally

convergent algorithms for solving optimization problems have been given.

The barrier to using these tools and other recent algorithms for solving

problems is the lack of a readily available, easily used language in which

to describe the optimization models. T1 language developed by Pugh [8] is

a step toward eliminating this barrier. ture progress will depend in

large part on bringing together those with the algorithmic ability, those

with the design optimization problems, and those with the capability of

developing computer systems.
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